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Higher School Certificate 
Trial Examination 

 
 
 
Mathematics Extension 2 
 
 
 
 
 
 
General Instructions 
• Reading time – 5 minutes 

• Working time – 3 hours 

• Write using black or blue pen 

• Board-approved calculators may be used 

• A table of standard integrals is provided 

• All necessary working should be shown in 
every question 

Total marks – 120 

• Attempt Questions 1-8 

• All questions are of equal value 
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1  (d) (a), (b), (c)    15 

2 (b), (c), (d), (e)  (a)    15 

3  (a), (b)(i)(ii)(iii) (b)(iv)(v)    15 

4  (b) (a) (c)   15 

5   (b)  (a)  15 

6  (a)    (b) 15 

7      (a), (b) 15 

8 (a)  (b)    15 

Marks 20 24 37 9 9 21 120 
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Total marks – 120 
Attempt Questions 1-8 
All questions are of equal value 
 
Answer each question in a SEPARATE writing booklet.  Extra writing booklets are available. 
 
 
 
 Marks 
 
Question 1  (15 marks)  Use a SEPARATE writing booklet. 
 
 

(a) (i) Express  21
2
x−

  in partial fractions. 2 

 
 

 (ii) Show that   





=

−

4
1

0
2 3

5ln
1

2 dx
x

 2 

 
 

 (iii) Evaluate   −

2
1

0
41

2 dx
x
x  2 

 
 
 

(b) Evaluate   ++

4

0
2cos2sin1

2

π

dx
xx

 3 

 
 
 

(c) Use completion of square to prove that   





=

++
−

1

0

1
2 7

4tan
544

4 dx
xx

 3 

 
 

Question 1 is continued on the next page 
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y = f(x) 

Question 1  (continued) Marks 
 
 
 
(d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 On separate diagrams, sketch the graphs of: 
 
 
 (i) )(ln xfy =  2 
 
 
 (ii) )(ln xfey =  1 
 
 

End of Question 1 
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Question 2  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) (i) Use integration by parts to show that 
 

   ( ) ( ) ( ) ( ) −=′−

1

0

1

0

01 dxxffdxxfx  2 

 
 

 (ii) Hence, or otherwise, evaluate  
( ) +

−
1

0
21

1 dx
x
x  2 

 
 
 

(b) Let  iyxz += , x , y  real, where  
5

3arg π=z  

 
 (i) Sketch the locus of z  1 
 
 
 (ii) Find  ( )z−arg  1 
 
 
 
(c) Sketch the region in the complex plane where  1+≤− ziz  2 
 
 
 
(d) iyxz += , x , y  real, is a complex number such that  

( ) ( ) 422 =−++ zzzz  
 
 (i) Find the cartesian locus of z  2 
 
 
 (ii) Sketch the locus of z  in the complex plane showing any features 

necessary to indicate your diagram clearly. 2 
 
 

Question 2 is continued on the next page 
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Question 2  (continued) Marks 
 
 
 
(e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In the Argand diagram, ABCΔ  is right-angled at B  and isosceles. 
 
 A, B, C represent the complex numbers a , b , c  respectively. 
 
 
 (i) Find the complex number BA  in terms of a  and b . 1 
 
 
 (ii) Prove that  ( )ibaic −+= 1  2 
 
 

End of Question 2 
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Question 3  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 

(a) (i) Sketch the parabola  
2

1 2xy +=   and use it to sketch the curve  

21
2
x

y
+

=  on the same diagram. 2 

 

 (ii) Hence, or otherwise, find the range of the function  1
1

2
2 −

+
=

x
y  1 

 
 

(b) Consider the function  














+

−= −
2

2
1

1
1cos

x
xy  

 
 (i) By using (a), or otherwise, find the range of the function. 2 
 

 (ii) Show that  
222

2
1

)1(

2
1
1cos

xx

x
x
x

dx
d

+
=















+

−−   and 

 
  give the simplest expressions for the derivative if 
 
  (α )   0>x  and ( β )   0<x  3 
 

 (iii) Sketch the curve  














+

−= −
2

2
1

1
1cos

x
xy  2 

 

 (iv) The region bounded by 














+

−= −
2

2
1

1
1cos

x
xy  and the line  

2
π=y  is 

revolved about the y axis. 
 
  Show that the volume of the solid of revolution is given by 

     +
−=

2

0
cos1
cos1

π

π dy
y
yV  2 

 
 (v) Find the volume V . 3 
 
 

End of Question 3 
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y 

x 
0 2 

xy 2=  

xy −=

• P(x,y) 

Question 4  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The base of a solid is the triangular region bounded by the lines  xy 2= , 

xy −=  and 2=x . 
 
 At each point  ),( yxP  in the base the height of the solid is xx +24  
 
 Find the volume of the solid. 4 
 
 
 

(b) If  22 1 xxy =+ , 0≠y , show that  
x
y

ydx
dy

2
1 −=  2 

 
 

Question 4 is continued on the next page 
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O 

y 

R 
•  B(0, -ae) 

• A(0, ae) 

Q •  
P(acosθ, bsinθ) 

12

2

2

2
=+

b
y

a
x  

x 

Question 4  (continued) Marks 
 
 
 
(c) 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 

 P(acosθ, bsinθ) is a point on the ellipse  12

2

2

2
=+

b
y

a
x , 0>> ba , where e  is 

the eccentricity of the ellipse. 
 
 From A(0, ae) and B(0, -ae) perpendiculars are drawn to meet the tangent at 

P(acosθ, bsinθ) at Q and R, respectively. 
 
 

 (i) Prove that the equation of the tangent at P is  1sincos =+ y
b

x
a

θθ  3 

 
 (ii) Hence, or otherwise, show that the line  kyx =+ αα sincos   is a 

tangent to the ellipse  if  22222 sincos kba =+ αα  2 
 
 (iii) Hence, or otherwise, prove that  222 2aBRAQ =+  4 
 
 

End of Question 4 
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O 

x 

Question 5  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) A particle of mass m moving with speed v experiences air resistance 2mkv , 

where  k   is a positive constant.  g  is the constant acceleration due to gravity. 
 
 
 (i) The particle of mass m  falls from rest from a point O. 
 
  Taking the positive x axis as vertically downward, show that  

)( 22 vVkx −= , where V  is the terminal speed. 
 
 
 
 
   2 
 
 (ii) Another particle of mass m  is projected vertically upward from ground 

level with a speed 2V , where V  is the terminal speed as in (i). 
 

  Prove that the particle will reach a maximum height of )1(ln
2
1 2V
k

+  3 

 
 
 (iii) Prove that the particle in (ii) will return to the ground with speed U  

where  422 −−− += VVU  4 
 
 
 

(b) The ellipse  1
34

22
=+ yx  is revolved about the line 4=x . 

 
 
 (i) Use the method of cylindrical shells to show that the volume of the solid 

of revolution is given by 
 

   
−−

−−−=

2

2

2
2

2

2 432438 dxxxdxxV ππ  4 

 
 
 (ii) Prove that the volume  2316 π=V  2 
 
 

End of Question 5 
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x 
0 

2
3

xy =  

• ( )32, ttP  

• ( )11, yxA  

Question 6  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ( )32, ttP  is any point in the curve 2
3

xy =  
 
 
 (i) Show that the equation of the tangent at ( )32, ttP  is 023 3 =−− tytx  2 
 
 

 (ii) ( )11, yxA  is a point not on the curve 2
3

xy =  
 
  Deduce that at most three tangents to the curve pass through A . 1 
 
 
 (iii) If the tangents with parameters 1t , 2t , 3t  do pass through ( )11, yxA , 

show that 
 
  (α ) 1

3
3

3
2

3
1 6yttt −=++  2 

 
 

  ( β ) ( ) ( ) ( ) 2
1

2
13

2
32

2
21 9xtttttt =++  2 

 
 

 (iv) Find a cubic equation with roots  
1

1
t

, 
2

1
t

, 
3

1
t

 2 

 
 

Question 6 is continued on the next page 
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B 
C 

A 

a+c 2c 

2a 

Question 6  (continued) Marks 
 
 
 
(b) (i) Given that ( ) ( ) YXYXYX cossin2sinsin =−++ , show that 
 

    
2

cos
2

sin2sinsin CACACA −+=+  1 

 
 
 (ii) Consider  ABCΔ  where 
 
 
 
 
 
 
 
 
 
 
 
  (α ) Use the sine rule to show that  BCA sin2sinsin =+  2 
 
 

  ( β ) Deduce that 
2

cos
2
1

2
sin CAB −=  3 

 
 

End of Question 6 
 



e2.Y.Kings.2005 
Page 13 of 31 

Question 7  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) Let ( ) ( ) ( ) ( )3333 21221)( nnnnnf +−+++++=  , ,3,2,1=n  
 
 
 (i) Show that ( ) ( ) ( ) ( )33 17121 +++=−+ nnnfnf  2 
 
 
 (ii) Show that 
 

   ( ) ( )( ) ( )23 1
4

123513
4

1212 ++=+++−+ nnnnnn  1 

 
 
 (iii) Use mathematical induction for integers ,3,2,1=n  to prove that 
 

   ( ) ( ) ( ) ( ) ( )( )3513
4

221
2

333 ++=+++++= nnnnnnnf   4 

 
 

 (iv) Given that ( )
2

333 1
2

21 



 +=+++ nnn ,  prove that 

 

  ( ) ( ) ( ) ( )( )3513
4

221
2

333 ++=+++++ nnnnnn   without induction. 2 

 
 

(b) (i) Show that 
!

112111

k
n

k
nn

n

k
n

k







 −−






 −





 −

=










,   nk ≤≤2  2 

 
 

 (ii) Deduce that 
( ) kk n

k
n

n

k
n










>
+








 +

1

1

,   nk ≤≤2  2 

 
 

 (iii) Deduce that, if n is a positive integer, 
nn

nn






 +>








+
+

+ 11
1

11
1

 2 

 
 

End of Question 7 
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Question 8  (15 marks)  Use a SEPARATE writing booklet. Marks 
 
 
 
(a) Consider the equation 0)1)(1(1 234567 =++++++−=− zzzzzzzz  
 
 

 (i) Show that 
7

2sin
7

2cos ππ iv +=  is a complex root of 017 =−z  1 

 
 
 (ii) Show that the other five complex roots of 017 =−z  are 
 
   kv  for 6,5,4,3,2=k  2 
 
 
 (iii) Show that ( ) kk vv =−7  for 6,,2,1 =k  
 
  i.e. show that the conjugate of kv −7  is kv  2 
 
 
 (iv) Deduce that 42 vvv ++  and 653 vvv ++  are conjugate complex 

numbers. 1 
 
 

 (v) Deduce that 
2
1

7
3cos

7
2cos

7
cos =+− πππ  3 

 
 

Question 8 is continued on the next page 
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Question 8  (continued) Marks 
 
 
 
(b) (i) Use a suitable substitution to show that 
 

   ,3,2,1,1sincos
2

0

1 == − n
n

dxxx n

π

 1 

 
 
 (ii) Show by integration that 
 

   xxxdxxx sincossin +−=  1 

 
 

 (iii) Let  ==
2

0

,2,1,0,sin

π

ndxxxt n
n  

 
  Use integration by parts to prove that 
 

   ,4,3,2,11
22 =−+= − nt

n
n

n
t nn  4 

 
 

End of Examination 
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